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ON A DYNAMIC MANAGEMENT DECENTRALIZATION PROBLEM’

A.N. ERMOLOV

A differential game with a fixed termination instant is examined, in which the control
on the first player's side is effected by many persons, called agents. Information
exchange between agents is not possible. A solution method is suggested, which
relies on the investigation of a many-criterion differential game by means of the
programmed iterations method. A solution of a linear praoblem is given for a poly-
hedral target set and under certain constraints on the control set.

1. Problem statement. A differential game is examined, in which the first player
(with a control u at his disposal) is a collective of n agents each of whom chooses a control
u; [f] and who, during the operation, observes the position of a vector z;{t] which depends
upon the i-th agent's control but is independent of the controls of the other agents constit-
uting the first player. It is not possible for the agents to exchange information during the
game. The agents' goal is to lead the trajectory zl#} = (z, [t],..., z,[i]) onto a certain target
set D at the instant 6, i.e., z[0]leD. The given problem generalizes the management de-
centralization principle studied in /1,2/ to the case of a dynamic system.

Problem 1. Let a collection of subsystems exist, whose motion is described by the
ordinary differential equations

' z' = fi (8, x4 uy, V) (1.1
tslty, 8, 2, =R, uy = P: () C R%
veQ; () RY, i=1, r

pras U, PO T et u oi ®)

where P;*, Q;* are compacta in R% and R% , respectively, i =1,..., n- The function It {2g,
6]l X Rt X P* X Q;* -~ R"i is continuous on the whole domain and for every compactum K C R%
and ¢, <t, satisfies a Lipschitz condition with some constant A, (K, t,, ) on the set

{t), 2] X K X Py* X Q% in addition, for any two numbers #,< f, there exists a, (f;, t,) such that

Vi@t 2w v |, < @ity ) (T2 ), + 1

on set [t), t,} X R* X P* X Q;*; i=1,..., n. Here P;(t)y Q,(t) are compact-valued upper-semi-
continuous many-valued mapplngs, 1ntegrable with respect to the Lebesgue measure A on i, 0]
/3/, from R! into 2R% ang 2R% | respectively, i = 1,..., n. The target set
n
D={zcF| 3 di(z)) >m} (1.2)
[

=2lrh z=(,...,.z)ER, m=R, teN&({1, 2 .

is prescribed as well. Here d;: R"-» Rt is a vector-valued function continuous on R'i,
To solve Problem 1 we examine an aux:.llary many-criterion differential game.

Problem 2.

Z=f( z, u v
tsl,, 0, zeR, usP () C R
ve Q(t) C R

The function f and the many-valued mappings P (f), Q (f) satisfy all the conditions satisfied
by fi, P; (t), @; (f) in Problem 1. The first player's goal is to maximize d (z [8]), where d is a
vector-valued function from R’ into R¥, continuous on the whole domain.
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For each point (f,, Z,), iy € [, 0], z, = R', we construct a set M (ty, Z4) of m = RE, such
that the Problem 2 of encounter with set {r e R‘|d(z) >>m)} at instant B is solvable from the
point (ty, T,) as from an initial point. The method of finding M (f,, z,) is described below in
Theorems 2 and 3. To solve Problem 1l it is necessary to substitute for each i -th subsystem
a Problem 2 wherein the role of the vector-valued target function is played by the d, from
(1.2), and to find for it the corresponding set M, (t,, z,). Next, we construct the set

M* (ty, 74) == glMi (tar Tai)

(see Lemma 1 below), where z, == (Zy1, ..., Ten). By W = {(t,, 7,) & R™' | m®’ &= M* (t,, z,)} we denote
the set of all positions (I,, T) from which, as from initial positions, Problem 1 is solvable
for the first player. 1In order to cbtain the collection of strategies of the agents constitut-
ing the first player, which solve Problem 1 on encounter with set (1.2) from the initial posi-
tion (t,, z,) & W, it is sufficient to find the collection of vectors m, & M, (ty, z4) C RS, i =
4« ., N, such that

ﬂ

Z my > m°

=1
and to solve n differential games with equations of motion coinciding with the equations of
motion of the i-th subsystem of (1.l), and with the target set{r & R"i 1di (z) > m},i=1,... n

To solve Problem 2 we use an idea advanced in /4/. Certain notation needed below was in-

troduced in /4,5/ and, therefore, we merely present a verbal description. Let U, be the first
player's counterstrategy in Problem 2; {U,} be the set of all counterstrategies in Problem 2;
{U,}, be the set of all counterstrategies of the i-th agent in Probleml,i=1,...,n X () =
X (-, ty, T4, Uy) be the cet of all motions generated by the counterstrategy U, & {U,} from the
point (f,, z,) R™! in Problem 2; X, () = X, (-, ty, Zai» U,;) be the set of motions generated by
the counterstrategy U,; e {U,}; from the point (f,, Ty € R in Problem 1, i=1,...,n We
denote

detf det
RAZA+{ys R |y<0), where A R%, a=N; Ry =R {y).

Definition 1. A set A R® is called an R-set if RA = A.

Properties of operator R and of R -sets.

1°. 4, BC R, RA4+B=RA +RB=R(A 4 B). 1I1f Ais an R-set, then 4 +B=A4 +
RB = R (4 + B).

2°. Let A,C R®*,z&Z, be a family of R-sets; then (J4;, ()4, are R-sets.

3. Let A, R* ze Z, be a family of R-sets; then ‘ z

A+ Saapc ) A, + 520,aVa)
Sa(pra) =(z=R* ||z —y o< a}

In Problem 2 we denote
M (Lgy Ty) = N Rd(x)
tnz)= U
and in Problem 1 we denote the corresponding sets

i (L Tyi) = Rd,
M (tyr Ty) (H),XQ(” (zy)

for the i-th subsystem. Additionally, we denote

n

M*(tazy) =) () R(Z di (=)

v X4 i=l
where the unicn is taken over U, = {U,},i=1,...,n, and the intersection, over = & X, (8,
tyr Tgin Upt)y i =1, ..., 0, Ty = (Ty1, - « -2 Tyn)-
Lemma 1.

M*(t,, z,)= 2;1 M (Lyir Tui)

The proof relies on the definition and the properties of the motions /6/.

2. Determination of the set of guaranteed results in Problem 2. Below we
require the notation introduced in /4/: {Ej, [t,, t,]} is the set of second player's programmed
controls on [t t,] in Problem 2; {Ha, [, t,]} is the set of admissible programmed control; on

[t), t4] in Problem 2; ¢ (f) is a programmed motion: an absolutely continuous function defined
uniquely for each programmed control m & {Ha, lt;, 1} {IL(v), [&, ]} is the program corresponding



to the second player's programmed control v & {Ex lty, td}i G (2, 4, 7y, v) is the attainability
domain at instant t&|[t;, ¢,] for the program {H (v), [, t,1}, v & {Ex. [t;, 1]} from the position
(t;, 7;) & R™*. 1In /4,5/ all notation was introduced for the case of P (f) and Q () not depending
on time; however, under the assumptions made all the necessary properties of the programmed
constructions are preserved. Let F (f, z) be the many-valued mapping R, 28Y By T (F) we
denote the many-valued mapping R'! -» 2% for which

IF) ez = N YF(r2)

where the union is taken over t & l¢,, 8] and over v& {Es, [t,, T}} and the intersection, over
&G (T, ly Ty v).

Definition 2. The many-valued mapping C (y): R®—2F% a B N, is said to be uniformly
continuous on set Y CR* if Ve>0 8 >0 Vy, eV, i =12, |y — ¥ lla <6, is fulfilled
Cy) CC(ys-y) +Sp(0, &), 7 =12

Below we require the following lemmas, presented without proof.

Lemma 2. Let C (y) be a many-valued mapping Re — 28 continuous on the compactum Y O
R*; then C (¥) is uniformly continuous on Y,

Lemma 3. Let C(y) satisfy the conditions of Lemma 2; then Ve >0 38§ > 0 for every com-
pactum K;C7Y,j=1,2, such that
dist® (K1, Ko) <8, UCHC U C@+Sp(08), j=1,2
Ky K3

Here dist® (K,, K,) is the Hausdorff distance in 2B%*, a & N.

Definition 3. The many-valued mapping €C:Y — 28® Y — Re, is said to be R-valued if
C(y) is an R-set, y&7Y.

Lemma 4. Let F (¢, 2): [t,, 6] X R'~> 2B® be an R-valued mapping continuous on the whole
domain; then T (F) (, z) too is an R-valued mapping on [t 6] X R'.

Proof. By virtue of the properties of function f, V(i,z,)eR" Sne{f[1,0) Viel,
019t tus 2., M < 0 (see /4/). Let the sequence {(i, )} converge to (t,,z,) from the right, i.e.,
I = Ty g | Ly Then

Vy> 03kl e N ViR (2.1)
T(F) (t 1) C T (F) (tay 2a) + S (0, 7)
V>0 eN ViR (2.2)

T'(F) (e ) CT (F) (try 1) + 8¢ (0, %)

Let the sequence {(, z}y)} converge to (¢, z,) from the left. Then for every v>0 we can find
e N such that relation (2.1) is fulfilled. 1In addition, for any ¢> 0 there exists KMe N
such that (2.2) is fulfilled. The continuity of the many-valued mapping T (F) follows from the
assertions made, while its R-valuedness follows from property 2° of operator R. The proofs
of all the assertions are alike; as an example, we present the proof of the first one.

By Lemma 2, F(t,z) is uniformly continucus on [t,,8] X & (0, 0), i.e.,

Vy>0Te >0V (¢, 2j) & Sy (e 7), 8), j=1, 2 (2.3)
Fty, 2) CF {tgp 75 ) + Sy (0, 12V

Because function f satisfies a Lipschitz condition on every compactum, #3 >0 Vie(s,, i, + 6] Vve
{Ex: [t,, 81} G (1, ty, 24y V) C Spyy 84y 74),8) follows from (2.3) for e>0. Thus, Vy>038>0 such that

QL’;!F(&-}-& I)CuLi)F(tr z)

whereve (£, [, 0, ze G, + 6,1, 2,v) and (t, 2) e Sy41 ((tes 24), 8).  Further, using property 3° of
operator R, we cobtain

L Feacy QLJ(F(L:)-}-SE(O.E-?—)C NOUFEa+s (0, 3)

where the intersection is taken over 1€t ,t,+ 8], ve {E,, [t;, 8]}, while the union, over z e G(t,
ty, 7. %). We fix +>>0. For it we choose a & and we consider ve[t, +98,6]. Beginning with some
e N, <t + 01, we consider vfe (£, 1, 0]} and v*e{E,.[t,, 8]} coinciding with + on [t, 6] /4/.
The well-known inegquality



dist! (G (3, b, 25, V%), G (%, by 2oy VN K Yox — 24 1 + ko (& — 1)) - exp (A, - 8 — 1) (2.4)
Ay = A5 (0, 0, 1, B), by = ) max )ﬁf(t, z, u, ) it

t, %, ©, v

the maximum is taken over [g, 8] X §; (0, @) X P* X ¢*, is valid for such +* and «~. By Lemma 3,
Y?>0,33>0 such that

¥
é{rF(T,z)CHF(t,Z)-{-SE(O. ”,E.) (2.5)

if dist! (Gx, G,) < & hexe Gy == G (1, ty, 2x, V%), Gy = G (T, 14, To» ¥*). Thus, from estimate (2.4) it follows
that V>0 Ik Vialy, t,+98] VW ={&,, i, 8}, and relation (2.5) is fulfilled for every
v* e {E,, [t., 81} coinciding with +* on [4,8]. Consequently, using property 3 of operator R, Vy>
0T e N Vi

T (. = P(t, . v
Bl 2= Ny APFEAC, 00y EE z)+sg(o, """zyz')’c
y 3
DAY P2+ 5 (0. F)+5 (0. F) =T+ 5, 0.9

where v* & {E,, [t, O]}, v* & {£,, [t,, 6]}, which proves the first assertion.
We denote

MO g, 5 = () U R (@)
v e {Eh [t;p e]}v TG (9, lay Zoy V)
MO (b, ) = T (M®) (b, 2,), k= NS {0,1,.. )

Lemma 5. M®(t,,z,) is an R-valued mapping continuous on [t 8] X R
The proof is analogous to that of Lemma 4.

Corollary 1. M®(t,, z,) k€N, is an R-valued mapping continucus on If,, 61 X R

Hote 1. M™P(,, z,) C M® ,, 2,), k<= N,

Later on, in Theorem 1 we prove the convergence of the sequence of sets Mm(t, z) to the
set M (t, 7). In meaning, the set M® ¢, z) consists of all m such that the first player can
be guaranteed a payoff m in the many-criterion game in the case when it is possible for the
second player to obtain information on the cbject's phase coordinates no more than k times
during the motion.

Th L. A
eorem AMY@E2)=M¢2) tS[tnd, 2SR
k=0

Proof. Let us prove that -
NM®ECM ¢, 2)
k=t
Let m e M® (te: Th Kk = Noom = M (t,, 2,)if and only if (i, T,) & Wy, where Wn is a maximal & -
stable bridge for Problem 2° with target set D, = {xreR'|d{(z) >m} /5/. We denote

Vg:’:::((t,Z)ERlHImEMﬂ)(tvz)}' ke No
V=V
Kang

The set Va" breaks at instant 8 on set Dy, i.e., a1 0 e R¥' |t = 0} = Dy, k& N, and,
consequently, V, breaks at instant 0 on D,,. Thus, it remains to show the u-stability of set
Vm /6/. To do this we show that for every position from Vm and for every programmed control
of the second player we can find a program confining the motion to set Ve Let (tq, g} E Vi,
=i, 8], v* & (£, [1,,#*]}. Then

mEMEN (20 C U MO, kel

G{i%, ty, Xe, V%)

Consequently, z* &G (I*, 14, Z, v*) exists such that m & M® (t*, z%), and, thus, u*e {{I(v%),
{2y, t*1}: (%, @ (2%, Ly, 2o, ") e V¥ ke N, exists. From the sequence (n"} (I (v%), Iz, t‘]}_
we pick out a subsequence »-weakly converging to some W & {Il (v*), l¢,, t*]}. The corresponding
subsequence {g (-, lx, Te 3*)} converges uniformiy to ¢ (-, t,;, Ty, M%) /k5,6/,- then @ (t*, ty, T4,
0" ¢ (t*, g, Ty, M*) as j—> co. By virtue of continuity of M® (¢, 1), V.® is a closed set, and



from Note 1 it follows that
3 .
VY CVE, Vie N *, tyz) eV e

whence ¢ (t*, t,, Z,, 1*) & Vp, but this precisely signifies the u-stability of set V.
Analogously /4/ it can be proved that

kﬁ M® @, 2) D M (¢, 2)
=0

3. Linear case of Problem 2. We can examine a linear many-criterion game, i.e., in

Problem 2
f@ z,u,v)y=A@{)z+ B({u+C@tw+g(@d)

where A (), B (t), C (!) are matrices of appropriate dimensions, depending continuously on ¢ on
[te, 8], £ (2) is a continuous vector-valued function; d(z) = Lz, where L is a matrix of dimension
E X 1. Since a linear problem can be transformed by a standard procedure (see /6/, for in-
stance) , without loss of generality we can reakon that Problem 2 in the linear case appears

as follows.

Problem 3.
f=utv+tg@thusPOCR, vresQ)es R

The function f (¢, z, u, V) = u + v + g () and the many-valued mappings P () and Q (¢) satisfy all
the conditions of Prcblem 2. The target function Lz does not change under the transformation.
In what follows we need the set-theoretic operation of geometric difference

ALB=Q(A+B), A4, BCR* a=N

introduced in /7,8/. We present some of its properties.

°. A+ 2B=A2B+h=A>2B+h vwhere hCR,a=N

2°. Let % >0, then (p4) X (¥B) =y (4 * B)

. AEBEC=ALB+C0

£ AER+CCA+0O2B

5. A~CccCB2C, if ACB

6°. 4 B is convex, if A is convex.

7°. . Let 4, B, C be convex sets from R%, % >0, ¥ > 0. Then [(C + ¢4) =B + xAl * B = [C +
b+ 0 A*@+x B

Using property 1° of operator R, for Problem 3 we find

M(o)(t,,z,)=ORL(z.+ Se]P(t)dx+y+ § eoar)=
[ts, 6]

. s

(RL § Peyar)a(L § owar)+L § g@dr+ Lz,
)} {te, 8] {ts, 6]

s - %,

(the intersection is taken over ye& S Q (2) dr).
Lemma 6. For Problem 3 tiat
M® (t,, z4) = M® (t,, 0) + Lz,, k= N,
Corollary 2.
M (ty, z4) = M (t,, 0) + Lz,
we denote M,® (t,, 6) = M® (z,, 0)

Note 2. For Problem 3
T M™ (2= N [(M‘,"’(r,ﬁ)-f—L § P(t)d}.)L
[te. 8) Ite, 7]

L § owartL § g(t)dl]-}-Lz,,
[ts, T] {ta, 1]

Theorem 12 In Preblem 3 let P(t)=p () P+ p(!) and Q@ (t)=p (1)Q + ¢ (), where P,(Q are
compac;;‘a in R'u: [ty, 8] = R, p () > 0, p (2), ¢ (1) are integrable vector-valued functions from [t,, 6]
into . Then

Mty 2) =Mty 2= § p()dr-(RLconvP 2
]

’.'



LeonvQ)+L § (p)+a()+g@)dr+ La,

[ty, 6]

Proof. Relying on Note 2, property 1° of operator f and properties 1° and 4° of geometric
difference, we obtain

ae(1) . IRV )N
My (g B) =T (M) (ty, 0) =

Lolormeo+L§ Pomar § ow+L] snar]o

N [MOw 0 +(rRL § Prars S Q) +
[t 0] (e 1] ()

L § gma]= N 016+ M, )

[te, T] + 8)

* T [ [te)

£ 33 L D

Thus, according to Note 1, from the relation
M® @y, T+ MO, ) DM, 0), t,=1ty, 6, 1= 4,61 (3.1
it follows that M, M (,, 8) = M@ (t,, 0), t, ¢, 8. The latter singifies that
MO =M 2), t=lt, 0, z=R ke N
and, since all the hypotheses of Theorem 1 are fulfilled, then M, z) = MY (¢ 5.

We verify the validity of (3.1); let ¢, <t, <t < 8. Relying on the properties of an in-
tegral of a many-valued mapping /3,9/ and on prcpertleq 1° and 2° from Sect.3, we obtain
MOt iy=RL( § pordhconvP+ § pryar) = (3.2)

[t t] [te, ts]

L § wwdheovQ+ § quydr) 42 § gyar=

[, ts) [t t:] [t t2]

w () dr-(RLconv P * Lconv Q) +
[t t2]
Ly (ply+q@®)+gt))ar

[t1, fe]
By property 5° of geometric difference, RL conv P = L conv ¢ is convex; consequently, (3.1) is

valid. Having ¢, =i,,8 =08 in (3.2), we complete the theorem's prpof.
We introduce the notation

MO (t,) = MY (¢, 0)

MEV ) =P +L § Poa L § ewar k=M
{te, T} {4, 71
Then for Prcblem 3
i k
MOty 0)= N MO (t)
(¢4, 8]
Theorem 3. Let a sequence {Ix}8=7¢>T1>...> I >... be spec:.r;\.ea such that P () =

ROP+p1),0t) =n QM +q(), t E [T,‘, T,,_] where P* QF are compacta in B ke N, p @), q (),
4 (f) satisfy the hypotheses of Theorem 2. Then

M by, 7) =M (t,, 2,) = ME) (t,) + L S g(t)dh + Lza
{ta, 01

o e P
laSitdkets L], A=Y

Proof. To simplify the calculations the proof is carried out only in the case

g =p@® =q®)=0,p@®=1,ts[t, 0] (3.3)
According to Lemma 6 and Corollary 2 it sufficies to prove that
M (b, 0) = M® (8., 8) = ME) () (3.4

le & [Tk+lv Tel, k= No

The proof is by induction: for k=0 the validity of (3.4) was shown in Theorem 2. For k=1
the proof is analogous to that of the induction step. Let (3.4) be true for all ¥ =0,1,..., k



Let ty = [Ty Tyl and let us prove
k+1) k+1)
M (5) D MED (1), Tt 0] (3.5)

Let Tra<tT<Tyx; relying on the induction hypothesis, the properties of an integral of a
many-valued mapping and the properties 3°, 4° 6°% 7° of geometric difference, we obtain

M =P o+ § Poa)rr { eoao
fte. 1 tte, 1
{[(M(,"-l) (T4 8+ (T, — ) Leonv P*) 2 (T, — 1) Leonv Q" +
(v — T'y,y) Lconv Pk]_'.(‘r—Tkﬂ)Lcoank—i-L S X)) dk}&
[tss Tg4al
L S Q) dh = [(M* (T, 8) + (T, — Ty,,) Leonv PY) &
fte) Treqd
Ty —Tyu) Leonv Q"+ L S P d;.]; L S Q) dr =
{tas Tk+1] {ts, Tk+1]
(Mﬁ'” Trp O+ L S P dx) 3 S Q@ dh = MED )
[te: Tga1d [tes Thiy)

The validity of (3.5) in case t, <1< T, and Ty <16 is proved similarly. Consequently,

(k+1) — Mk+1) 3.6
MED ey, 8) = M7 (1) (3-6)

Let us prove that
MED, D MED (1) (3.7

For this it is enough to verify the inclusion

L3 ks
MY (1, 8) D ME) (14)

Let ¢, <7< Trn- Relying on the properties of an integral of a many-valued mapping and proper-
ty 7° of geometric difference, we cbtain

MO () (Mg;‘:: ()L S P dh) ) S Q) dh=
{ts. 1) [te, 1)
(M (Typs 0) + (Typy — ) Leonv P 27, — 1) Leonv QF +
(t —#4) L conv PF*1] 2 (1 — 1) L conv QK1 = Mg'k*:l) (ts)

When Ty, <1< 0 the validity of (3.7) is verified analogously. Thus, M (t,, 0) = Mi"‘”) {t4» 6), which
completes the theorem's proof.

Note 3. Lemma 1 and Theorems 2 and 3 yield as well a solution to Problem 1 with the
criterion: maximization at instant 6 of the function

omin  (h; (< L, 2>)
=1, ..., k

where I, e R", hy: R =R! is a monotonically increasing function, ;=1, .. §.

Note 4. Suppose that in Problem 1 with target set {re R'|Lr > m®}, fi. Py (1), Q; (t) satisfy
the hypotheses of Theorem 2, i=1,..., n, and let for simplicity, that relations (3.3) are ful-
filled. Then by Lemma 1 "

M* (ty, zg) = (8 —1ts) >} (AL conv P, 2 L conv Q)+ Lz

=1

If, however, in Problem 1 the management is effected from a single center, then the solution
of such a differential game in terms of set M (1, 2) is as well obtained by means of Theorem 2.
In this case

n n
Mok (ty, zy) = (0 — 1y) (RL coan P, 2 Lconv H Qt) + Lzy =

=1 1=1
(6 —ty) (( 2"3 RL; conv Pi) 2 (é L, conv Qi)) + Lzg
=1 =1

Consequently, in general,
M** (£, 24) D M* (L, 74), te € |1y, 8], 2, & RT



in accord with properties 2° and 4° of geometric difference. However, in case P,=4P Q=
$% =R, i=1,... n, for example, M**= M* i.e., in this case decentralized management is no
worse that centralized management.
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