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ON A DYNAMIC MANAGEMENT DECENTRALIZATION PROBLEM* 

A.N. ERMOLOV 

A differential game with a fixed termination instant is examined,inwhichthecontrol 
on the first player's side is effected by many persons, called agents. Information 
exchange between agents is not possible. A solution method is suggested, which 
relies on the investigation of a many-criterion differential game by means of the 
programmed iterations method. A solution of a linear problem is given for a poly- 
hedral target set and under certain constraints on the control set. 

1. Problem statement. A differential game is examined, in which the first player 
(with a control u at his disposal) is a collective of n agents each of whom choosesacontrol 
Ui ItI and who, during the operation, observes the position of a vector ~1 it1 which depends 
upon the i-th agent's control but is independent of the controls of the other agents constit- 
uting the first player. It is not possible for the agents to exchange information duringthe 
game. The agents' goal is to lead the trajectory z~tl=(~~It],..., r,,[tl) onto a certain target 
set D at the instant 8, i.e., z[OI=D. The given problem generalizes the management de- 
centralization principle studied in /1,2/ to the case of a dynamic system. 

Problem 1. Let a collection of subsystems exist, whose motion is described by the 
ordinary differential equations 

* = fi (6 511 41 Vi) 
7~ It,, 01, 51 E R“, uf E Pi (t) c RPi 

(1.1) 

uf E Qr (t) c RQi, i = i,. . ., n 

where Pi*, Q1* are compacta in RPi and pi, respectively, i = 1,. .., n. The function fi :(t,, 
(31 x R’i x Pi* X Qr*-+ R’i is continuous on the whole domain and for every compactum KC R’i 
and t,<t, satisfies a Lipschitz condition with some constant A, (K, t,, t,) on the set 
ItI, t,l x K x P,* X Qi*; in addition, for any two numbers t,< t, there exists ai (tl, t2) such that 

on set [t,, t,] x R’t x Pi+ X Qi+; i = 1,. . ., n. Here Pi(t), Q*(t) are compact-valued upper-semi- 
continuous many-valued mappings, integrable with respect to the Lebesgue measure 
/3/, from R'into FZRP' and 2aQ', respectively, i = 1,..., n. The target set 

h on It,, 81 

5=(21, . . ..~.,)ER~, mOEd, E~Ns(l,2 ,...) 

is prescribed as well. Here di: R ‘a+Rk is a vector-valued function continuous on R’i. 
To solve Problem 1 we examine an auxiliary many-criterion differential game. 

Problem 2. 

x' = f (t, 5, u, v) 
t E It,, 01, 5 E II’, u E P (t) c RP 
vEQ(t)cR* 

The function f and the many-valued mappings P(t), Q(t) 
by fi, Pi (t), Qi (t) in Problem 1. 

satisfy all the conditions satisfied 
The first player's goal is to maximize d(z181), where d is a 

vector-valued function frcnn R’ into Rg, continuous on the whole domain. 
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For each point (t*, me), t, E It,,, 01, z* E R' , we construct a set M(t,,x,) of me RET such 

that the Problem 2 of encounter with set (5~ R‘ 1 d(z)>m} at instant f3 is solvable from the 
point (t,,s,) as from an initial point. The method of finding ibl(t,, s,) is described below in 
Theorems 2 and 3. To solve Problem 1 it is necessary to substitute for each i -th subsystem 
a Problem 2 wherein the role of the vector-valued target function is played by the d, from 
(1.2), and to find for it the corresponding set Mi (t+, x*). Next, we construct the set 

(see Lemma 1 below), where z+ = (z+1, . . ..z+.,). By W = {(t+, q,) e R’+l 1 m0 E ill* (t+, cc+)} we denote 
the set of all positions (t,,z,)from which, as from initial positions, Problem 1 is solvable 
for the first player. In order to obtain the collection of strategies of the agents constitut- 
ing the first player, which solve Problem 1 on encounter with set (1.2) from the initial posi- 
tion (t,,s,)E W, it is sufficient to find the collection of vectors m, E MI (& me{) C Ra, i = 
1 7. . ., 4 such that 

$mi> m0 

and to solve n differential games with equations of motion coinciding with the equations of 
motion of the i-th subsystem of (l.l), and with the target set{z E R'i 1 c?(z)> mt}, i = 1, . . ., n. 

To solve Problem 2 we use an idea advanced in /4/. Certain notation needed below was in- 
troduced in /4,5/ and, therefore, we merely present a verbal description. Let U, be the first 
player's counterstrategy in Problem 2; {U,} be the set of all counterstrategies in Problem 2; 
(U,,}, be the set of all counterstrategies of the i-th agent in Probleml,i = 1, . . . . n; X (.) = 
X(-,t,,z,, U,) be thesetof all motions generated by the counterstrategy CT, E (a,} from the 
point (t*, z*) E R’+l in Problem 2; Xi (.) = X, (*, t,, t*it U”,) be the set of motions generated by 
the counterstrategy UVi E {U,}i from the point (t*, I*i)E Rrbc’ in Problem 1, i = I,...,% We 
denote 

ciet det 
Rd = A + {y E R” I y < 0}, where A c P, u E N; Ry = R (y}. 

Definition 1. A set A c Ra is called an R-set if RA = A. 
Properties of operator Rand of R-sets. 
1". A, B c R=, RA + B = RA + RB = R (A + B). If A is an R-set, then A+B=A+ 

RB = R (A + B). 
2”. Let A,cR~,zEZ, be a family of R-sets; then IJ A,,&A, are R-sets. 
3”. Let A,cR~,zEZ, be a family of R-sets; then 

;I (A,+ &(O,s))C '27 AZ-t-&(O,s r/;;, 

s,(~,a)=(s~R"lIIx-~yII,ga) 

In Problem 2 we denote 

nf(t,~,)=,&J rQjRd(r) 
0 

and in Problem 1 we denote the corresponding sets 

Mi(t*p~ei)= U Yl R& (xi) 
(""),xi(e) 

for the i-th subsystem. Additionally, we denote 

M*(t**m*)=p g R !!ildi (xi)) 
I 

where the union is taken over Uvi E {ICJ,}~, i :‘I, . . ., n, and the intersection, over ZI E X, (0, 

t,, 5*ir C.JV~), i p 1, . , ., n, 2* = (%+l, . . ., +I). 

Letnma 1. 

M+ (t*,~*)=~$~Mi (k* ma*) 

The proof relies on the definition and the properties of the motions /6/s 

2. Determination of the set of guaranteed results in Problem 2. Below we 
require the notation introduced in /4/: (ES., It,, &I) is the set of second player's programmed 

controls on It,, t.J in Problem 2; (i&k, &I} is the set of admissible programmed controls on 
[t,,t,l in Problem 2; m(t) is a programmed motion: an absolutely continuous function defined 

uniquely for each programmed control q~ {Hh, It,, &I); {n(v), [TV, td) is theprogranlcorresponding 
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to the second player's programmed control v E {I$., It,, $,I); G(t, tI, z,, u) is the attainability 
domain at instant t E [tr, t,] for the program {n (v), It,, t,]}, v E {EL. it,, t,l) from the position 
@I, q) E P+1. In /4,5/ all notation was introduced for the case of P(t) and Q(t)not depending 
on time; however, under the assumptions made all the necessary properties of the programmed 
constructions are preserved. Let F(t, z) be the many-valued mapping R'+1+2RE. By r(F) we 

denote the many-valued mapping R’+l+ZRE for which 

r(F)(t,,z*)= n n u F(r. 4 % ” x 

where the union is taken over r~[t,,@] and over vE(&,[t,,tl} and the intersection, over 

z E G(c t,, +,, v). 

Definition 2. The many-valued mapping C(y) :&‘+ xRB, a,f3 EN, is said to be uniformly 
continuous on set YCRa if Ve>O 36>0 VyTbrl=Y, j=1,2, IIy1-y2[o<6, is fulfilled 
C (YA c C (YS-I) + SB (0, e), i = 1% 

Below we require the following lemmas, presented without proof. 

LemIna 2. Let C(y) be a many-valued mapping Ra+zR6, continuous on the compactwn YC 

R” i then C(y) is uniformly continuous on Y. 

Lemma 3. Let C(y) satisfy the conditions of Lennna 2; then Q.s>O 36>0 for every com- 
pactum K, C Y, j = 1,2, such that 

disP(Kl, KS) <h IJ, C (Y) c KlJ, C (Y) + SB (‘A& I- I92 

Here dista (K,, KZ) is the Hausdorff distance in 2Ra, a EN. 

Definition 3. Thetmany-valued mapping C :Y+2RB, YC Ra, is said to be R-valued if 
C(y) is an R-set, YE Y. 

Lemma 4. Let F (t, 5) : It,, 
domain; then r (F) (t, z) too is 

PrOOf. By virtue of the 

01 II v (f, t.3 I*. 11) /II Q 0 (see /4/J. 
zk - x$, tk 1 t,. Then 

01 X R’+PE be an R-valued mapping continuous on the whole 
an R-valued mapping on [to, 01 X R’. 

properties of function f, V (L,,r,) E R'+' 31 E (Hx, [f,,Ol; Vt E It., 
Let the sequence {(fk,rk))converge to (&,I,) from the right, i.e., 

Vy>O3k’=NVk>k’ 

r (F) (tl;r rh) c r (F) (t+, %) + SE (0, V) 

V (p)>O 3k? E N Vk> ka 

I- (F) (h, z*) c I- CR) (h? Id + SE (0, v) 

(2.1) 

(2.2) 

Let the sequence ((~h.s~)) converge to (t,,z,) from the left. Then for every y>O we can find 
lis,K such that relation (2.1) is fulfilled. In addition, for any v>O there exists ~'EN 
such that (2.2) is fulfilled. The continuity of the many-valued mapping r(F) follows fromthe 
assertions made, while its R-valuedness follows from property 2' of operator R. The proofs 
of all the assertions are alike; as an example, we present the proof of the first one. 

By Lemma 2, F(f,z) is uniformly continuous on Lt., 01 X SI (0, e), l-e., 

Fry> 0 3E> 0 V (tj3 rj) E Sl+, ((&BY S*)* E), i = 13 2 (2.3) 

F (tf. zj) C F &_,. zg-J -i SE (0, vN-8 

Because function f satisfies a Lipschitz condition on every compactum, 3&>0 VIE [f,, tr+6] VVE 

{El, If*, el) G (1, t,, z** v) c s,+1 (@r, 5*), e) follows from (2.3) for E>O. Thus, Vy>O36>0 such that 

0 U F&+6, z)c U PP. 2) 
-9% 6 2) 

where v E (EA, It*. el), + E C (t, + 6, t,, I&, v) and (f, z) E SI+, ((t*, t,), e). Further, using property 3" of 
operator R, we obtain 

where the intersection is taken over 1~ [fr, f++61, v E (El, [t,,81), while the union, over = E G(r, 
f,. I*. 0). We fix P> 0. For it we choose a 6 and we consider rep If,+a, 01. Beginning with some 
&,=A', fk<f.+;b<~, we consider GE{.!& [tk,eJ) and v*E{E~. If,, 01) coinciding with vh- on [tk,91 /4/. 
The well-known inequality 



(2.4) 

the maximum is taken over [:,,8j xS~(O,O) x P* x Q* , is valid for such 9 and vk. By Lemma 3, 
Vy>O,%e>O such that 

iJ~[s.r)cUF(~,~)+~~(o,~) 
‘k G. (2.5) 

if dist' (Gk, C.) <e; here CI( = G (7, th, ~8, vR), G. = C (T, t,, I., Y*). Thus, from estimate (2.4) it follows 
that vy>o zW>k,V+ear[t,, t*+&l vvn fe{BX,[t~,B]), and relation (2.5) is fulfilled for every 
+es{B%, It., 61 coinciding with VL on [+_el. Consequently, using property 3' of operator R,Vy> 
OSk'esh Vk>k’ 

r tF) (‘k* $1 = 11 i-& 9 p, ‘b =)ctta+, 
k’ 

&! jj (F(r* t, + $( O. $f),c 
7 l 

[**qB1 f-J _y F (+. 2) + SE [fJ* -g) -I- SE (0. +) = F(F) + St (0, ui 
. 

where vkes {B*, [tk, Ol), v* E (E,,[t+,81}, which proves the first assertion. 
We denote 

Lemma 5. f@*‘(t,,X,) is an R-valued mapping continuous on [to,81 X Ii’. 
The proof is analogous to that of Lemma 4. 

Corollary 1. M’k’ @*, z+) kEN, is an R-valued mapping continuous on It,, e1 x R’. 

i?ote I. lM'k++D @*, 2*) c Mk)@*, 3*), k+s Nip 
Later on, in Theorem 1 we prove the convergence of the sequence of sets @(t, xl to the 

set M (t, 2). In meaning, the set Mk'(t, x) consists of all m such that the first player can 
be guaranteed a payoff min the many-criterion game in the case when it is possible for the 
second player to obtain information on the object's phase coordinates no more than k times 
during the motion. 

Theorem 1. fi tik’ (t, z) - M (t, x) t E [to, 01, x E R’ 
k-3 

PrOOf. Let us prove that 

fi M*'(t,x) CM (t, x) 
k4 

Let rn= Iw”‘(t,,z,),kEN,.mE M(t,, x&if and only if (t*,z,,} E Wm. where W, is a maximal u - 

stable bridge for Problemr with target set fl,,, = {x=R' /d(x)>na} /5/. We denote 

V$'= ((t, z) E R’+’ 1 m E M(k) (t, z)), k E Ng 

V 

The set v,,,(k) breaks at instant 8 on set D,,,, i.e., J',,,(k) fl ((t, x)~k+’ 1 t = 6) = &,,k~N, and, 
consequently, V, breaks at instant 0 on D,. Thus, it remains to show the u-stability of set 

Vm /6/. To do this we show that for every position frcm V,and for every programmed control 
of the second player we can find a program confining the motion to set V,. Let ft+, .=A E V,, 
t+ fS ft., 01, V* fS (Eb It,, PI). Then 

m E Mg+l) (t+, I*) c IJ M(‘) (t+, z), k E: No 
GP, t., =.. v9 

Consequently, I* ~Gft*, t*, x,, v*) exists such that mf % ‘*‘(t*, z*), and, thus, nh E W W, 
It,, PI): (t*, q~ (t*, t,, x,, qk)) E Ymt*), k E N, exists. From the sequence {q’} C {n-(@), [tz, PI} 
we pick out a subsequence *-weakly converging to some n* E (n(v*), It,, t*]}.The corresponding 
subsequence {a,(., t*, x*, n"~)} converges uniformly to cp (.,t*.%,n*) /5,6/; then cp (t*. t,. x*, 

nh++tp(t*,t+,xr,n*)as j-+ m. BY virtue of continuity of M"'ft, x),V,‘~’ is a closed set, and 



from Note 1 it follows that 

whence cp (t*, t,, z*, rl*) E V,, but this precisely signifies the u-stability of set V,. 
Analogously /4/ it can be proved that 

; Mfk) (t, r) 3 M (t, z) 
k-0 

3. Linear case of Problem 2. We can examine a linear many-criterion game, i.e., in 
Problem 2 

f (t, z, u, u) = A (t)z + B (+J + C (t)v + g (t) 

where A (t), B(t), C(t) are matrices of appropriate dimensions, depending continuously on t on 

It,, 01, g(t) is a continuous vector-valued function; d(z)= I& where Lis a matrix of dimension 
E x I. Since a linear problem can be transformed by a standard procedure (see /6/, for in- 
stance), without loss of generality we can reakon that Problem 2 in the linear case appears 
as follows. 

Problem 3. 
z* = u + v + g (t); u E P U) c R', v E Q (t) E R' 

The function f(t, z, IL, u) = u + u + g(t) and the many-valued mappings P(t) and Q(t) satisfy all 
the conditions of Problem 2. The target function Lz does not change under the transformation. 

In what follows we need the set-theoretic operation of geometric difference 

A%B=(;j(A+B), A, BcR~, aEN 

introduced in /7,0/. We present some of its properties. 
1". (A + k) z B = A 2 (B + h) = A LB + h, where h c Ra, a E N 
2”. kt 9 > 0, then ($A) -(qB) = (1, (A z B) 
3“. (ArB)zC=Ar(B+C) 
4”. (A +B)+Cc(A+C)‘B 
5”. A ACCBAC, if AcB 

61. ALB is convex, if A is convex. 
Let A, B, C 

($ + :)‘~I “(9 + x) B. 
be convex sets from Ra, 9 > 0, x > 0. Then I(C + $A) 2 $B + xAI x xB = [C + 

Using property 1' of operator R, for Problem 3 we find 

(RL s P(W)_& s 
IL. e1 v.. 81 

QW)+L s g(t)dX+Lr, 
I‘.. 81 

(the intersection is taken over 6, E s Q (t) W. 
Lemma 6. For Problem 3 

LB1 

M'k' (t*, z,) = Mtk' (tr, 0) + Lz,, k EN, 

Corollary 2. 

M (t., 4 = M (t+, 0) + Lz, 
We denote M,“’ (f*, 6) = MC’ (t*, 0) 

Note 2. For Problem 3 

r (M’“‘) @*, r*) = Itpel [( Mik’ (7, ‘3 + L I, s ~, P(t) da) 2 
l r 

L [t s 1l Q (t) da -t- L rtj 1l g (0 da] + Ls, 
.I 

Theorem 2. 
compacta 

In Problem 3 letP(1)=p((t)P+ p(1)and Q(t)= p(t)Q + q(t), where P, Q are 

into R’. 
in R’p: It,, 01 + II*, p (t) > 0, p (t), q (t) 
Then 

are integrable vector-valued functions from It,, 01 

M (t*, 2,) = M(O) (t+ z ) - *+- S p (i) dh . (RL conv P Z 
11.. el 
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LconvQ)+L s (P(t)+q(t)+glt))dh+Lx, 
If.. 81 

Proof. Relying on Note 2, property 1" of operator R and properties I" and 4" ofgeometrlc 
difference, we obtain 

MI"@,, e)=r(M'O')(t*, O)- - 

Thus, according to Note 1, from the relation 

M,(O) (t*, tj + M,(O) (r, 6) 3 M,(O) (t*, e), t, E ho, 131, TE Lt,,e~ (3.1) 

it follows that M,(')(t,, e) = M*(O) (t+, e), t, Eit,. 81. The latter singifies that 

M'"' (t, 5) = M(O) (t 5) , 9 t E It,, el, 2 E R’, k E IV 

and, since all the hypotheses of Theorem 1 are fulfilled, then fi'(t, r) = &l'"'(t. rj. 
We verify the validity of (3.1); let to < t, < t, < 8. Relyinq on the properties of an in- 

tegral of a many-valued mapping /3,9/ and on properties 1’ and 2' from Sect.3, we obtain 

fvfp (tx, t?) = RL ift st_1 P (0 dA.conv P + fL St , P (W) ” 
8. * I. I 

+$t)d~.convQ+ 1 NW) +L 1 g(tjda= 
I, I [h. t>1 Ih, 1x1 

S p(t)dh.(RLconvPiLconvQ) + 
[h. 14 

L S (P(o+~v)+ g(t))dh 

(3.2) 

By property 5" of geometric difference, RL conv PA L convQ is convex; consequently, (3.1) is 
valid. Having t, = t,,t, = 8 in (3.2), we complete the theorem's proof. 

We introduce the notation 

~$0 (t*j = id? (f*, 0) 

~‘~*)(t*)=(~~~)(~,e)+r, S P(t)dh)L- S Q(t)& k=No 
rks Cl fh. Tl 

Then for Problem 3 

M’*k) (t,, 0) = fr;e, MY (h) 

Theorem 3. Let a sequence {T,je=T,>T,>. . .> Tk>. . . be specified such that P(t)= 

p(f) P’ +p(t), Q(t) = p (t)Q(*) + q (f), f E [T,, Tk-x17 where Pk, Q” are compacta in R’, k E N, p (t), Q (t), 

CL (4 satisfy the hypotheses of Theorem 2. Then 

M(f,, z*) =Mck’(L z+) = @; (f,) + L 1 g(f) dr. + k, 
CL, 81 

t, E irk+,. f-k]. k ‘3 No 

Proof. To simplify the calculations the proof is carried out only in the case 

.+ (0 - P (0 = P (1) - 0, I* (I) = 1, I E 14, el (3.3) 

According to Lemma 6 and Corollary 2 it sufficies to prove that 

M (t., 0) = M,Q V*, 8) = M$J (I*) (3.4) 

t, = [Pk+,' Tkt. k=A'o 

The proof is by induction: for k=O the validity of (3.4) was shown in Theorem 2. For k = i 

the proof is analogous to that of the induction step. Let (3.4) be true for all K=O,l,. .., k. 
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Let t, E lTk+a, T,,,), and let us prove 

Mk+"(t*)=l dk+n(t*), TE[t+,0] c Tk+l 
(3.5) 

Let Tk+l < r < Tk ; relying on the induction hypothesis, the properties of an integral of a 

many-valued mapping and the properties 3", ho, 6', P of geometric difference, we obtain 

M(:+‘) (t,,) I (.W,) (T, ‘3) + L s P (t) dl) 2 L s *Q (t) dl I) 

IL Tl [:rv %I 

(T - Tk+,) L conv Pk] - (T - T,,) L wnv Qk + L s P (f)dA} L 

[b. Tk+ll 

L s Q(t)dA=[(M(~-1)(Tk,8)+(Tk-Tk+1)L~o~~Pk)~ 

IL rk+ll 

(Tk - Tk+l)Lcon\' Qk+ L 1 P(f)dh]S 1 Q (t) dh = 
IL T&+11 tb. Tk+ll 

s Z’ (1) dh) L L s 
Lt.+ Tk+,l It.7 Tk+,l 

Q (f) dh = “&+;‘:1 (t*) 

The validity of (3.5) in case ~,<T<T~+~ and Tk<z<e 

~(k+l) (t*, e) = @;;+:I (i*) . 
Let us prove that 

~@+a) (k 8) 3 M&+;; w I 

For this it is enough to verify the inclusion 

@+a) (t*. e) 3 “‘;I;; (t*) 

is proved similarly. Consequently, 

(3.6) 

(3.7) 

Let t, <s S Tk+l. Relying on the properties of an integral of a many-valued mapping and proper- 
ty i0 of geometric difference, we obtain 

M;k+2)(t*) = (A$+;; (7) + L 1 P (t) dh)’ L 1 Q (t)dh = 

IL. 71 Il..71 
[(Al(") (T k+l, O)$ (Tk+l - z) Lconv P'+l) f(Tk+, - T) L conv Q + 

(A*) L ccmv pk+']L(r -f*)L conr Qk+' = nf&!;;;(f*) 

When Tk+l<rqO the validity of (3.7) is verified SnalOgOUSly. 

completes the theorem's proof. 
Thus, M (t., 0) = My) (L*, e), which 

Note 3. Lemma 1 and Theorems 2 and 3 yield as well a solution to Problem 1 with the 
criterion: maximization at instant 0 of the function 

Ilk Chj (< lj, z7 > )) 
j=l, . . . . g 

where 2,~ R', hj: RI-R1 is a monotonically increasing function, ] = 1,. ., E 

Note 4. Suppose that in Problem 1 with target set (zER'ILz> me),f,.P, (f), Q*(t) satisfy 
the hypotheses of Theorem 2, I= i,..., n, and let for simplicity, that relations (3.3) are ful- 
filled. Then by Lemma 1 

M* (t*, I*) = (e-f*) i (mI conr Pi L .cL cony Q,) + .k* 
t=1 

If, however, in Problem 1 the management is effected from a single center, then the solution 
of such a differential game in terms of set M(t,z) is as well obtained by means of Theorem 2. 
In this case 

R+mPi)"(~ ticonvQi))+Lz* 
I=1 t-1 

Consequently, in general, 
hi" (t*. I+) 3 AI* (t*, T.)V 1, = lk, '3). I, E R' 
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in accord with properties 2' and 4' of geometric difference. However, in case P, = ~~1'. Q, = 
&Q,fPrtzR1,i= t,..., n, for example, @*=M*, i.e., in this case decentralized management is no 
worse that centralized management, 
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